Home Home Contact Language Videos Photo Gallery Tourdates Wikipedia Software & Education Route planner Articles News service Postcards Shop Heather Nova albums Movies - trailers etc. Creativity Archive Personal Funny Cartoons Downloads Book reviews Mail Site credits HN Mailing list heathernova.de Links Save our world FAQ Let us know what you think Heather Nova tweets Guestbook Heather Nova on Youtube
World news Women today USA Politics Sport today Business Hollywood First lady of Hollywood Finding Nemo Dawn of the dead New York times Free membership Amsterdam Gay parade 2003 Internet issues Ncards scam Whois Ncards? Terrorism The Great Warming Thanksgiving, Christmas and New Year Poems Seven All Time Classic Western TV Series Author Uses New Medium to Promote Book Scam warning! Science Storm Scam warning! Apple Codename Asteroid Netscape Gliese 581C Queen's day Supernova history Mother's Day A woman for president? An email of Hillary Clinton Astronomers Catch First Stirrings of a Supernova Gay pride 2008 rgp German Hacker A new Iraq? Heather Nova Flash site Horizon QCMS 4.0 gun violence prevention

Supernova discovered



 Supernova SN 2006gy
artist impression of the exploding star SN 2006gy
Supernova discovered
According to observations by NASA's Chandra X-ray Observatory and ground-based optical telescopes, the supernova SN 2006gy is the brightest and most energetic stellar explosion ever recorded and may be a long-sought new type of explosion. The top panel of this graphic is an artist's illustration that shows what SN 2006gy may have looked likeif viewed at a close distance. The fireworks-like material in white shows the explosion of an extremely massive star. This debris is pushing back two lobes of cool, red gas that were expelled in a large eruption from the star before it exploded. The green, blue and yellow regions in these lobes shows where gas is being heated in a shock front as the explosion material crashes into it and pushes it backwards. Most of the optical light generated by the supernova is thought to come from debris that has been heated by radioactivity, but some likely comes from the shocked gas.

The bottom left panel is an infrared image, using adaptive optics at the Lick Observatory, of NGC 1260, the galaxy containing SN 2006gy. The dimmer source to the lower left in that panel is the center of NGC 1260, while the much brighter source to the upper right is SN 2006gy. Thepanel to the right shows Chandra's X-ray image of the same field of view, again showing the nucleus of NGC 1260 and SN 2006gy. The Chandra observation allowed astronomers to determine that SN 2006gy was indeed caused by the collapse of an extremely massive star, and not the most likely alternative explanation for the explosion, the destruction of a low-mass star. If the supernova was caused by a white dwarf star exploding into a dense, hydrogen-rich environment, SN 2006gy would have been about 1,000 times brighter in X-rays than what Chandra detected.
sn2006gy xray picture

Fast Facts for SN 2006gy:
Credit  Illustration: NASA/CXC/M.Weiss; X-ray: NASA/CXC/UC Berkeley/N.Smith et al.; IR: Lick/UC Berkeley/J.Bloom & C.Hansen
Scale  Each bottom panel is 2.75 arcsec across.
Category  Supernovas & Supernova Remnants
Coordinates (J2000)  RA 03h 17m 27.10s | Dec +41º 24' 19.50"
Constellation  Perseus
Observation Date  November 14, 2006
Observation Time  8 hours
Obs. ID  8473
Color Code  Intensity
Instrument  ACIS
References Smith, N, et al.,2007
Distance Estimate  About 238,000,000 light years
Release Date  May 07, 2007

Source :  http://chandra.harvard.edu/photo/2007/sn2006gy/
 Supernova SN 2006gy
artist impression of the exploding star SN 2006gy
Supernova discovered
According to observations by NASA's Chandra X-ray Observatory and ground-based optical telescopes, the supernova SN 2006gy is the brightest and most energetic stellar explosion ever recorded and may be a long-sought new type of explosion. The top panel of this graphic is an artist's illustration that shows what SN 2006gy may have looked likeif viewed at a close distance. The fireworks-like material in white shows the explosion of an extremely massive star. This debris is pushing back two lobes of cool, red gas that were expelled in a large eruption from the star before it exploded. The green, blue and yellow regions in these lobes shows where gas is being heated in a shock front as the explosion material crashes into it and pushes it backwards. Most of the optical light generated by the supernova is thought to come from debris that has been heated by radioactivity, but some likely comes from the shocked gas.

The bottom left panel is an infrared image, using adaptive optics at the Lick Observatory, of NGC 1260, the galaxy containing SN 2006gy. The dimmer source to the lower left in that panel is the center of NGC 1260, while the much brighter source to the upper right is SN 2006gy. Thepanel to the right shows Chandra's X-ray image of the same field of view, again showing the nucleus of NGC 1260 and SN 2006gy. The Chandra observation allowed astronomers to determine that SN 2006gy was indeed caused by the collapse of an extremely massive star, and not the most likely alternative explanation for the explosion, the destruction of a low-mass star. If the supernova was caused by a white dwarf star exploding into a dense, hydrogen-rich environment, SN 2006gy would have been about 1,000 times brighter in X-rays than what Chandra detected.
sn2006gy xray picture

Fast Facts for SN 2006gy:
Credit  Illustration: NASA/CXC/M.Weiss; X-ray: NASA/CXC/UC Berkeley/N.Smith et al.; IR: Lick/UC Berkeley/J.Bloom & C.Hansen
Scale  Each bottom panel is 2.75 arcsec across.
Category  Supernovas & Supernova Remnants
Coordinates (J2000)  RA 03h 17m 27.10s | Dec +41º 24' 19.50"
Constellation  Perseus
Observation Date  November 14, 2006
Observation Time  8 hours
Obs. ID  8473
Color Code  Intensity
Instrument  ACIS
References Smith, N, et al.,2007
Distance Estimate  About 238,000,000 light years
Release Date  May 07, 2007

Source :  http://chandra.harvard.edu/photo/2007/sn2006gy/